合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 滴體積法分析TODGA/HNO3體系萃取La3+過程中界面張力變化影響因素(一)
> 陽(yáng)-非離子復(fù)合表面活性劑體系表面張力測(cè)定及基礎(chǔ)性能評(píng)價(jià)(二)
> 一體化生物復(fù)合乳液研制及在碳酸鹽巖體積加砂壓裂中的應(yīng)用(二)
> 表面活性劑是否對(duì)斥水性土壤的潤(rùn)濕性有影響?——概括、介紹
> 中心對(duì)稱分子稀土夾心雙酞菁銩LB膜制備及二次諧波產(chǎn)生機(jī)制
> 雙鏈乳糖酰胺季銨鹽表面活性劑物化性能、應(yīng)用性能及復(fù)配性能研究
> FYXF-3煤粉懸浮劑潤(rùn)濕吸附性能、?傷害性能及在煤層氣壓裂改造現(xiàn)場(chǎng)的實(shí)施方案(三)
> 表面張力對(duì)乙醇液滴沖擊過冷水平壁面的鋪展動(dòng)力學(xué)行為的影響(二)
> 可視化實(shí)驗(yàn)方法研究電場(chǎng)作用下液滴撞擊表面的動(dòng)態(tài)行為(二)
> 基于天然植物油的酰胺胺氧化合物的合成表征及表面性質(zhì)——實(shí)驗(yàn)程序
推薦新聞Info
-
> 耐擦刮無(wú)膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(二)
> 耐擦刮無(wú)膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(一)
> 利用超微量天平制備微孔淀粉處理含Cu(II)離子染料廢水
> 不同類型的堿、pH值對(duì)孤東油田原油界面張力的影響(下)
> 不同類型的堿、pH值對(duì)孤東油田原油界面張力的影響(上)
> 不同結(jié)晶結(jié)構(gòu)的脂肪晶體顆粒界面自組裝行為、儲(chǔ)藏穩(wěn)定性研究
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測(cè)定及對(duì)泡沫壓縮性能的影響(三)
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測(cè)定及對(duì)泡沫壓縮性能的影響(二)
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測(cè)定及對(duì)泡沫壓縮性能的影響(一)
> 多功能膜材研發(fā):界面張力已成為整套工藝鏈協(xié)同下動(dòng)態(tài)演化的核心控制點(diǎn)
Delta-8 動(dòng)物胃腸道體內(nèi)中藥物的溶解度的測(cè)定——結(jié)論、工具書類!
來(lái)源:上海謂載 瀏覽 1671 次 發(fā)布時(shí)間:2021-11-26
結(jié)論
胃腸道pH值和緩沖容量的種間差異是重要的考慮因素,尤其是對(duì)胃腸道給藥的pHresponsive配方和可電離藥物。 因此,兔子和豬的空腸、回腸和近端結(jié)腸具有相對(duì)較高的緩沖容量,而豬遠(yuǎn)端結(jié)腸具有較低的緩沖容量是非常重要的考慮因素。 與人相比,大鼠、兔和豬的近端小腸和升結(jié)腸的液體的滲透壓和表面張力也較高。 胃腸道特征的這些差異導(dǎo)致潑尼松龍?jiān)诖笫篌w內(nèi)的溶解度較高(近端結(jié)腸除外),而潑尼松龍?jiān)谪i和兔體內(nèi)的溶解度與人類相當(dāng)。 因此,如果在大鼠的體液中測(cè)量,中性化合物潑尼松龍的溶解度可能被高估。 另一方面,可電離藥物美沙拉秦在兔和豬體內(nèi)的溶解度在小腸中部高于人,在結(jié)腸中低于人,僅在小腸遠(yuǎn)端與人相當(dāng)。 胃腸道環(huán)境的差異,如pH值、緩沖容量、滲透壓和表面張力,導(dǎo)致藥物溶解度的差異。 在兔子和豬中,美沙拉秦的溶解度在沿胃腸道向下移動(dòng)時(shí)發(fā)生顯著變化,這在很大程度上受管腔液的pH值和滲透壓的影響。
工具書類
1. Flaisher-Grinberg S et al. Models of mania: from facets to domains and from animal models to model animals. J Psychopharmacol 2010; 24: 437–438.
2. Insel TR. From animal models to model animals. Biol Psychiatry 2007; 62: 1337–1339.
3. Hannah-Poquette C et al. Modeling mania: further validation for Black Swiss mice as model animals. Behav Brain Res 2011; 223: 222–226.
4. Calabrese EJ. Gastrointestinal and dermal absorption – interspecies differences. Drug Metab Rev 1984; 15: 1013–1032.
5. Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory-animals. Biopharm Drug Dispos 1995; 16: 351–380.
6. McConnell EL et al. Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments. J Pharm Pharmacol 2008; 60: 63–70.
7. Ward FW, Coates ME. Gastrointestinal pH measurement in rats: influence of the microbial flora, diet and fasting. Lab Anim 1987; 21: 216–222.
8. Smith HW. Observations on the Flora of the alimentary tract of animals and factors affecting its composition. J Pathol Bacteriol 1965; 89: 95–122.
9. Clarysse S et al. Postprandial evolution in composition and characteristics of human duodenal fluids in different nutritional states. J Pharm Sci 2009; 98: 1177–1192.
10. Kalantzi L et al. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res 2006; 23: 165–176.
11. Fadda HM et al. Drug solubility in luminal fluids from different regions of the small and large intestine of humans. Mol Pharm 2010; 7: 1527– 1532.
12. Merchant HA et al. Assessment of gastrointestinal pH, fluid and lymphoid tissue in the guinea pig, rabbit and pig, and implications for their use in drug development. Eur J Pharm Sci 2011; 42: 3–10.
13. ToxNet. Mesalamine: Toxicology data network (ToxNet). US National Library of Medicine, CASRN: 89-57-6. 2014. (http://toxnet.nlm.nih.gov/cgi-bin/sis/ search2/r?dbs+hsdb:@term+@rn+@ rel+89-57-6, last accessed 25th June 2014).
14. Machatha SG, Yalkowsky SH. Comparison of the octanol/water partition coefficients calculated by ClogP, ACDlogP and KowWin to experimentally determined values. Int J Pharm 2005; 294: 185–192.
15. McConnell EL et al. Gut instincts: explorations in intestinal physiology and drug delivery. Int J Pharm 2008; 364: 213–226.
16. Mudie DM et al. Physiological parameters for oral delivery and in vitro testing. Mol Pharm 2010; 7: 1388– 1405.
17. French DL, Mauger JW. Evaluation of the physicochemical properties and dissolution characteristics of mesalamine: relevance to controlled intestinal drug delivery. Pharm Res 1993; 10: 1285–1290.
18. Perez de la Cruz Moreno M et al. Characterization of fasted-state human intestinal fluids collected from duodenum and jejunum. J Pharm Pharmacol 2006; 58: 1079–1089. 19. Diakidou A et al. Characterization of the contents of ascending colon to which drugs are exposed after oral administration to healthy adults. Pharm Res 2009; 26: 2141–2151.
Delta-8 動(dòng)物胃腸道體內(nèi)中藥物的溶解度的測(cè)定——摘要、介紹
Delta-8 動(dòng)物胃腸道體內(nèi)中藥物的溶解度的測(cè)定——材料和方法