合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 聚氧乙烯鏈長(zhǎng)度調(diào)控非離子Gemini表面活性劑的表面張力、接觸角(四)
> 基于LB膜分析儀研究P507-N235體系萃取稀土過程的溶解行為規(guī)律
> 一滴水緩慢落到非常光滑的平面上,接觸面積會(huì)有多大?
> 4種油醇烷氧基化物平衡和動(dòng)態(tài)表面張力、潤(rùn)濕性、泡沫性、乳化性質(zhì)研究(一)
> 基于表面張力的水質(zhì)檢測(cè)與分析
> 表面張力儀的十個(gè)應(yīng)用
> 電場(chǎng)強(qiáng)度大小對(duì)表面張力、液滴鋪展變形運(yùn)動(dòng)的影響
> 混合型烷醇酰胺復(fù)雜組成對(duì)油/水界面張力的影響規(guī)律(一)
> 利用具有較強(qiáng)的表面張力的羧酸改良氧化鉛鋅礦球團(tuán)干粉成型粘合劑
> 固體、鹽溶液表面張力測(cè)量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(三)
推薦新聞Info
-
> 以大豆為原料合成的N-椰子油?;鶑?fù)合氨基酸表面活性劑表面張力、乳化起泡潤(rùn)濕性能測(cè)定(二)
> 以大豆為原料合成的N-椰子油?;鶑?fù)合氨基酸表面活性劑表面張力、乳化起泡潤(rùn)濕性能測(cè)定(一)
> 表面張力和重力驅(qū)動(dòng)下液態(tài)釬料填充焊縫流動(dòng)模型構(gòu)建及效果評(píng)估(三)
> 表面張力和重力驅(qū)動(dòng)下液態(tài)釬料填充焊縫流動(dòng)模型構(gòu)建及效果評(píng)估(二)
> 表面張力和重力驅(qū)動(dòng)下液態(tài)釬料填充焊縫流動(dòng)模型構(gòu)建及效果評(píng)估(一)
> 鹽水溶液中,磺酸型含氟表面活性劑復(fù)合體系表、界面張力和潤(rùn)濕性研究(三)
> 鹽水溶液中,磺酸型含氟表面活性劑復(fù)合體系表、界面張力和潤(rùn)濕性研究(二)
> 鹽水溶液中,磺酸型含氟表面活性劑復(fù)合體系表、界面張力和潤(rùn)濕性研究(一)
> FYXF-3煤粉懸浮劑潤(rùn)濕吸附性能、?傷害性能及在煤層氣壓裂改造現(xiàn)場(chǎng)的實(shí)施方案(三)
> FYXF-3煤粉懸浮劑潤(rùn)濕吸附性能、?傷害性能及在煤層氣壓裂改造現(xiàn)場(chǎng)的實(shí)施方案(二)
超低界面張力復(fù)配表面活性劑用于渤海X油田水驅(qū)后的“挖潛提采”(二)
來(lái)源:石油與天然氣化工 瀏覽 811 次 發(fā)布時(shí)間:2024-12-10
2結(jié)果與討論
2.1原油族組分碳數(shù)分布
疏水端擴(kuò)散進(jìn)入原油的能力對(duì)表面活性劑在油水界面吸附,降低油水界面張力有直接影響。根據(jù)“相似相溶”原理,表面活性劑疏水端擴(kuò)散進(jìn)入原油的能力和其是否與原油中低極性組分(即飽和分和芳香分)具有相似結(jié)構(gòu)密切相關(guān)。因此,測(cè)定原油中飽和分和芳香分的碳原子數(shù)分布,對(duì)快速篩選驅(qū)油用表面活性劑具有指導(dǎo)意義。
圖1為原油飽和分和芳香分中碳原子數(shù)分布測(cè)定結(jié)果。從圖1可知,渤海某油田原油飽和分的碳原子數(shù)主要分布在C12~C21,芳香分的碳原子數(shù)主要分布在C16~C21和C23~C26。因此,在選擇表面活性劑時(shí),表面活性劑的疏水端碳數(shù)應(yīng)保持在C12~C26范圍內(nèi)。
2.2單一表面活性劑降低油水界面張力性能
根據(jù)第2.1節(jié)原油飽和分和芳香分中碳原子數(shù)分布結(jié)果,同時(shí)考慮到成本的可行性,選擇了脂肪醇聚氧乙烯醚硫酸鈉(疏水端碳原子數(shù)為12)、十二烷基苯磺酸鈉、十二烷基硫酸鈉、十六烷基二甲基甜菜堿、烷基糖苷APG1214(疏水端碳原子數(shù)為12~14)5種表面活性劑作為渤海某油田原油超低界面張力驅(qū)油劑的復(fù)配原料。
圖2為不同表面活性劑降低油水界面張力的情況。從圖2可知,在5種表面活性劑質(zhì)量分?jǐn)?shù)均為0.2%的情況下,十六烷基二甲基甜菜堿和烷基糖苷APG1214效果最好,分別能將油水界面張力降至0.38 mN/m和0.17 mN/m,低于0.50 mN/m。這是因?yàn)樵惋柡头趾头枷惴种蠧12~C16組分所占比例大,使得這兩種表面活性劑的疏水端碳原子數(shù)與其匹配較好,根據(jù)“相似相溶”原理,這兩種表面活性劑疏水端擴(kuò)散進(jìn)入油相的能力較強(qiáng),因而降低油水界面張力的效果更好。
圖2同時(shí)也說明,采用單一表面活性劑將油水界面張力降至超低(10-3mN/m)難度大,因?yàn)閱我槐砻婊钚詣╇y以在油水界面形成致密的界面膜。因此,在研究超低界面張力驅(qū)油表面活性劑時(shí),除考慮表面活性劑疏水端碳原子數(shù)與原油中飽和分和芳香分碳原子數(shù)分布的匹配性外,還應(yīng)在測(cè)定單一表面活性劑降低油水界面效果基礎(chǔ)上,考慮將不同表面活性劑進(jìn)行復(fù)配,利用表面活性劑分子親水端之間的電荷效應(yīng)或疏水端碳原子數(shù)差異引起的疏水端空間位置互補(bǔ)效應(yīng),使表面活性劑分子能在油水界面形成致密的界面膜,從而實(shí)現(xiàn)將油水界面張力降至超低。
2.3復(fù)配表面活性劑降低油水界面張力性能
由于十六烷基二甲基甜菜堿和烷基糖苷APG1214降低油水界面張力效果最好,加之烷基糖苷APG1214本身疏水端碳原子數(shù)分布較寬(C12~C14),因此,考慮將二者進(jìn)行復(fù)配,充分利用二者疏水端的空間位置互補(bǔ)效應(yīng),實(shí)現(xiàn)油水界面張力的進(jìn)一步降低。
圖3為二者按不同質(zhì)量比復(fù)配后降低油水界面張力的效果。由圖3可知,在相同質(zhì)量分?jǐn)?shù)(0.2%)下,復(fù)配表面活性劑能在10 min內(nèi)將油水界面張力降至超低,并在15 min內(nèi)達(dá)到穩(wěn)定。這不僅說明復(fù)配表面活性劑降低油水界面張力的能力明顯優(yōu)于單一表面活性劑,同時(shí)也證實(shí)了十六烷基二甲基甜菜堿與烷基糖苷APG1214疏水端之間存在良好空間位置互補(bǔ)效應(yīng)。這種效應(yīng)不僅有利于二者在油水界面快速發(fā)生吸附,并達(dá)到平衡,也有利于二者在油水界面上形成致密的界面膜。隨著十六烷基二甲基甜菜堿和烷基糖苷APG1214質(zhì)量比由2∶1降至1∶2,穩(wěn)定油水界面張力由2.61×10-3降至5.10×10-4mN/m,但當(dāng)二者質(zhì)量比降至1∶3時(shí),穩(wěn)定油水界面張力反而有所升高,為6.10×10-3mN/m。這可能是因?yàn)楫?dāng)二者質(zhì)量比低于1∶3時(shí),二者疏水端的空間位置互補(bǔ)效應(yīng)減弱所致。圖3表明,十六烷基二甲基甜菜堿和烷基糖苷APG1214的最佳質(zhì)量比為1∶2。
2.4復(fù)配表面活性劑含量對(duì)降低油水界面張力的影響
圖4為十六烷基二甲基甜菜堿和烷基糖苷APG1214按質(zhì)量比為1∶2復(fù)配所得表面活性劑,在不同質(zhì)量分?jǐn)?shù)時(shí)降低油水界面張力的效果。由圖4可知,隨復(fù)配表面活性劑質(zhì)量分?jǐn)?shù)的增加,油水界面張力呈下降趨勢(shì)。當(dāng)復(fù)配表面活性劑質(zhì)量分?jǐn)?shù)≥0.10%時(shí),油水界面張力可降至超低。這說明,在使用該復(fù)配表面活性劑作為驅(qū)油劑時(shí),其質(zhì)量分?jǐn)?shù)不應(yīng)低于0.10%。
超低界面張力復(fù)配表面活性劑用于渤海X油田水驅(qū)后的“挖潛提采”(一)