合作客戶(hù)/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> pH對(duì)馬來(lái)松香MPA與納米Al2O3顆粒形成的Pickering乳液類(lèi)型、表/界面張力影響(一)
> 采空區(qū)CO2地層水系統(tǒng)的界面張力(IFT)影響規(guī)律
> 合成血液穿透試驗(yàn):表面張力受溫度、表面活性劑影響較大
> 膜分析儀應(yīng)用:膽固醇對(duì) hBest1/POPC 和 hBest1/SM Langmuir 單分子層的
> 表面張力對(duì)激光空泡脈動(dòng)及潰滅特性的影響(二)
> 新調(diào)和燃料添加劑表面張力下降,燃燒更充分
> 硝磺草酮懸浮劑制劑不同稀釋倍數(shù)的動(dòng)態(tài)表面張力測(cè)定結(jié)果
> 不同種類(lèi)與濃度的無(wú)機(jī)鹽氯化物對(duì)麥胚脂肪酶油-水界面特性的影響(二)
> 涂料配方設(shè)計(jì)如何選擇潤(rùn)濕劑?表面張力成為重要決定因素之一
> 細(xì)胞培養(yǎng)基的理化性質(zhì)粘滯性及表面張力的內(nèi)容
推薦新聞Info
-
> 正己醇聚氧乙烯醚硫酸鈉、正己醇聚氧丙烯醚硫酸鈉水溶液平衡表面張力、動(dòng)態(tài)表面張力測(cè)定(二)
> 正己醇聚氧乙烯醚硫酸鈉、正己醇聚氧丙烯醚硫酸鈉水溶液平衡表面張力、動(dòng)態(tài)表面張力測(cè)定(一)
> 遼河油田原油的石油酸、石油堿組分萃取過(guò)程、結(jié)構(gòu)表征及界面張力測(cè)量——結(jié)果與討論、結(jié)論
> 遼河油田原油的石油酸、石油堿組分萃取過(guò)程、結(jié)構(gòu)表征及界面張力測(cè)量——實(shí)驗(yàn)部分
> N-十四?;於彼峒捌溻c鹽合成路線(xiàn)、制備、表面張力等性能測(cè)定(二)
> N-十四?;於彼峒捌溻c鹽合成路線(xiàn)、制備、表面張力等性能測(cè)定(一)
> 3種增效劑對(duì)滅草松AS、草銨膦AS、高效氟吡甲禾靈EC增效作用及表面張力影響(三)
> 3種增效劑對(duì)滅草松AS、草銨膦AS、高效氟吡甲禾靈EC增效作用及表面張力影響(二)
> 3種增效劑對(duì)滅草松AS、草銨膦AS、高效氟吡甲禾靈EC增效作用及表面張力影響(一)
> 以大豆為原料合成的N-椰子油酰基復(fù)合氨基酸表面活性劑表面張力、乳化起泡潤(rùn)濕性能測(cè)定(二)
溫度、截?cái)喟霃?、模擬分子數(shù)對(duì)水汽液界面特性的影響規(guī)律(二)
來(lái)源:河南化工 瀏覽 1011 次 發(fā)布時(shí)間:2024-11-28
2模擬結(jié)果與討論
2.1溫度對(duì)密度分布的影響
在模擬分子數(shù)N=256和截?cái)喟霃絩c=0.9498 nm的條件下,當(dāng)溫度T=400、450、500、550和610 K時(shí),模擬得到的密度分布如圖3所示。統(tǒng)計(jì)得到的汽相主體密度ρV、液相主體密度ρL及汽液界面厚度d如表2所示。由圖3及表2可見(jiàn),汽相主體密度和汽液界面厚度隨溫度的提高而增加,而液相主體密度隨溫度的提高而減小。
液相主體密度與汽相主體密度之差(ρL-ρV)與溫度T的關(guān)系如圖4所示??梢?jiàn),液、汽相主體密度之差隨溫度的升高而降低;從理論上講,在臨界點(diǎn)處,其差值應(yīng)該趨近于零,這與圖3所示的規(guī)律一致。液、汽相主體密度之差與溫度的關(guān)系可以擬合成式(14)的形式。
式中水臨界溫度Tc=647.3 K,利用表2數(shù)據(jù)對(duì)式(14)進(jìn)行擬合,得到參數(shù)ρ0=1545.8 kg/m3,指數(shù)因子x=0.5516。
2.2溫度對(duì)界面張力的影響
在模擬分子數(shù)N=256和截?cái)喟霃絩c=0.9498 nm的條件下,當(dāng)溫度T=400、450、500、550和610 K時(shí),水汽液界面張力的模擬結(jié)果見(jiàn)表3。
圖5為局部界面張力的分布曲線(xiàn)(500 K)。由圖5可見(jiàn),汽相主體的局部界面張力基本為零;從汽相主體向液相主體的過(guò)渡過(guò)程中,界面張力值逐漸增加,在汽液界面區(qū)達(dá)到峰值;在液相主體又在零值附近波動(dòng)。水汽液界面張力模擬值隨溫度變化規(guī)律如圖6所示。
由圖6可以看出,隨著溫度的提高,界面張力降低,模擬值與實(shí)驗(yàn)值之間的誤差逐漸減小。界面張力與溫度的關(guān)系可以擬合得到方程(15)。
將表3的數(shù)據(jù)對(duì)式(15)進(jìn)行擬合,得到的參數(shù)γ0=254.3 mN·m-1,指數(shù)因子k=1.305。
2.3溫度對(duì)勢(shì)能分布的影響
在模擬分子數(shù)N=256和截?cái)喟霃絩c=0.9498 nm的條件下,當(dāng)溫度T=400、450、500、550和610 K時(shí),汽相主體總勢(shì)能UV、液相主體總勢(shì)能UL及總勢(shì)能勢(shì)阱深度ΔU的模擬結(jié)果如表4所示。圖7為水分子的勢(shì)能分布曲線(xiàn)(500 K),圖8為液相主體區(qū)域的勢(shì)能隨溫度的變化趨勢(shì)。
圖8液相主體區(qū)域的勢(shì)能隨溫度的變化趨勢(shì)
前已述及,水的勢(shì)能分為L(zhǎng)-J勢(shì)能和靜電勢(shì)能。由圖7可以看出,L-J勢(shì)能均為正值,在液相區(qū)形成勢(shì)壘,勢(shì)壘高度ΔULJ為液相主體L-J勢(shì)能與汽相主體L-J勢(shì)能之差;靜電勢(shì)能均為負(fù)值,在液相區(qū)形成勢(shì)阱,勢(shì)阱深度ΔUe為汽相主體靜電勢(shì)能與液相主體靜電勢(shì)能之差;由于靜電勢(shì)能起主導(dǎo)作用,總勢(shì)能也為負(fù)值,同樣在液相區(qū)形成勢(shì)阱,分子之間主要為吸引作用。從圖8可以看出,汽相主體勢(shì)能作用不明顯,勢(shì)壘高度隨溫度升高而降低,液相主體勢(shì)能的勢(shì)阱深度隨體系溫度的升高而減小。
2.4模擬分子數(shù)對(duì)模擬結(jié)果的影響
在溫度500 K和截?cái)喟霃絩c=0.9498 nm的條件下,當(dāng)模擬分子數(shù)N=108、256、500和864時(shí),模擬得到的密度分布見(jiàn)圖9。統(tǒng)計(jì)得到的汽相主體密度ρV、液相主體密度ρL及汽液界面厚度d見(jiàn)表5。
圖9水分子數(shù)對(duì)密度分布的影響
表5不同水分子數(shù)下界面性質(zhì)的模擬結(jié)果
由表5和圖9可見(jiàn),隨著模擬分子數(shù)的增加,液相主體密度有所增加,液相主體區(qū)域?qū)挾燃哟?,汽液界面厚度稍有增大,汽相主體密度有所波動(dòng)。
2.5截?cái)喟霃綄?duì)模擬結(jié)果的影響
在溫度為500 K和模擬分子數(shù)為864的條件下,當(dāng)截?cái)喟霃絩c=0.7915、0.9498、1.2660 nm時(shí),模擬得到的密度分布如圖10所示。統(tǒng)計(jì)平均得到的汽相主體密度ρV、液相主體密度ρL及汽液界面厚度d如表6所示。從表6和圖10可以看出,隨著截?cái)喟霃降脑黾?,液相主體密度增大,汽相主體密度減小,汽液界面厚度變化不大。
3結(jié)論
采用SPC模型,對(duì)水汽液界面特性的分子動(dòng)力學(xué)模擬研究結(jié)果表明,隨著溫度的升高,汽相主體密度增加,汽液界面厚度增大,液相主體密度降低,界面張力逐漸減小,液相主體區(qū)域勢(shì)能的勢(shì)阱深度也逐漸降低。隨著模擬分子數(shù)的增加,液相主體密度增加,汽液界面厚度稍有增大。隨著截?cái)喟霃降脑黾?,液相主體密度增加,汽液界面厚度變化不大。