合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 表面活性劑性能形成、HLB值計算、關(guān)鍵作用及其應(yīng)用
> ?表面張力測量科學(xué):從經(jīng)典原理到現(xiàn)代智能操作(以Kibron表面張力儀為例)
> 仲醇聚氧乙烯醚硫酸鹽平衡和動態(tài)表面張力及應(yīng)用性能研究(二)
> Delta-8 動物胃腸道體內(nèi)中藥物的溶解度的測定——結(jié)果和討論
> 粉末涂料固化過程中的表面張力變化規(guī)律與測試方法
> 以大豆為原料合成的N-椰子油?;鶑?fù)合氨基酸表面活性劑表面張力、乳化起泡潤濕性能測定(二)
> NaOL、HZ組合捕收劑對鋰輝石礦物浮選效果、表面張力影響(一)
> 高鹽油藏下兩性/陰離子表面活性劑協(xié)同獲得油水超低界面張力的方法(二)
> 基于界面張力和表面張力測試評估商用UV油墨對不同承印紙張的表面浸潤性差異(三)
> 豬肉、雞肉和魚肉肌漿蛋白油-水界面性質(zhì)、氨基酸組成、蛋白質(zhì)構(gòu)象研究(一)
推薦新聞Info
-
> 耐擦刮無膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(二)
> 耐擦刮無膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(一)
> 利用超微量天平制備微孔淀粉處理含Cu(II)離子染料廢水
> 不同類型的堿、pH值對孤東油田原油界面張力的影響(下)
> 不同類型的堿、pH值對孤東油田原油界面張力的影響(上)
> 不同結(jié)晶結(jié)構(gòu)的脂肪晶體顆粒界面自組裝行為、儲藏穩(wěn)定性研究
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測定及對泡沫壓縮性能的影響(三)
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測定及對泡沫壓縮性能的影響(二)
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測定及對泡沫壓縮性能的影響(一)
> 多功能膜材研發(fā):界面張力已成為整套工藝鏈協(xié)同下動態(tài)演化的核心控制點(diǎn)
硅基納米原位乳化減阻劑與原油的界面張力達(dá)到10-1mN/m數(shù)量級,提高原油采收率
來源:西南石油大學(xué) 瀏覽 1118 次 發(fā)布時間:2024-08-09
隨著石油開發(fā)技術(shù)的進(jìn)步,過去難以開發(fā)的重油等非常規(guī)石油資源越來越受到重視。但由于稠油和水的流動性差,注入水指指現(xiàn)象嚴(yán)重,波及系數(shù)低,導(dǎo)致稠油采收率也較低。常規(guī)水驅(qū)稠油采收率一般為10-20%。自從開發(fā)了三次采油方法以來,石油工業(yè)一直在尋找新技術(shù)來提高采收率。
稠油因其儲量豐富、粘度高、流動性差等特點(diǎn),已成為剩余油資源開發(fā)的重點(diǎn)。降低粘度的措施對于降低重油/超重油的流動阻力和增加其流動性是必需的。熱法、稀釋法、化學(xué)法和生物法是不同情景稠油油藏常用的開采技術(shù)。以蒸汽為主的熱方法,包括循環(huán)蒸汽增產(chǎn)(CSS)和蒸汽輔助重力排水(SAGD)成本高昂且對環(huán)境具有挑戰(zhàn)性?;瘜W(xué)驅(qū)由于其經(jīng)濟(jì)有效性被廣泛應(yīng)用,通常情況下,化學(xué)驅(qū)油方法使用表面活性劑、聚合物和堿,有時會組合使用它們來提高采收率。隨著能源需求的增加,石油公司被迫尋找新的解決方案,以回收二次采油后被殘留的石油。因此,當(dāng)納米技術(shù)成為解決其他工業(yè)問題的主要手段時,石油研究人員也開始關(guān)注納米技術(shù),以尋求可能解決這些問題的方案。
相比傳統(tǒng)的化學(xué)驅(qū)油提高原油采收率技術(shù),改性的納米粒子分散體系用于化學(xué)驅(qū)油具有良好的增產(chǎn)、增注效果。納米顆粒(NPs)是微小的(1-100nm)顆粒,具有出色的滲透和吸附能力,可調(diào)的物理化學(xué)特性和獨(dú)特的熱性能。由于它們的體積小,NP被允許通過較大尺寸材料無法接觸到的微小孔隙和狹窄的喉嚨,且有著良好的抗剪性好、耐鹽性好以及熱穩(wěn)定性,避免了在高溫高礦化度地層生成沉淀。近幾十年來,納米技術(shù)迅速成為一種新型的主導(dǎo)技術(shù),能夠在技術(shù)和經(jīng)濟(jì)上與傳統(tǒng)方法競爭,納米技術(shù)在石油和天然氣工業(yè)中的應(yīng)用為開發(fā)更經(jīng)濟(jì)、更有效和更環(huán)保的油氣開采技術(shù)提供了前所未有的機(jī)會。
例如,Zargartalebi等人證實在一定濃度的納米顆粒下可以達(dá)到更低的IFT。Nguyen等人設(shè)計了表面活性劑/聚合物無機(jī)納米復(fù)合材料,用于提高高溫高鹽海上油藏的采收率。結(jié)果顯示納米復(fù)合材料在降低界面張力方面非常有效。在巖芯驅(qū)油實驗中,可以在92°C和800 ppm礦化度下額外回收6.2%的油。
由此可見,相比傳統(tǒng)的化學(xué)驅(qū)油提高原油采收率技術(shù),改性的納米粒子體系用于化學(xué)驅(qū)油將具有良好的增產(chǎn)效果。因而針對目前稠油油藏采收率較低的問題,設(shè)計高效的納米流體驅(qū)油劑形成相對穩(wěn)定的O/W低粘度乳液是解決稠油油藏采收率較低這一問題的關(guān)鍵。
而通過硅烷偶聯(lián)劑改性的納米二氧化硅與聚醚F127、α-烯基磺酸鈉(AOS)反應(yīng)制得硅基納米原位乳化減阻劑,能夠與原油的界面張力達(dá)到10-1mN/m數(shù)量級,并協(xié)同改善油藏的潤濕性,降低原油黏附功并在誘導(dǎo)形成Pickering乳化液,減小流動阻力,從而大幅度提高原油采收率。
硅基納米原位乳化減阻劑的制備分為兩步:
步驟S1:取納米二氧化硅在乙醇溶液中常溫振蕩分散均勻,之后加入硅烷偶聯(lián)劑,通氮除氧后密封攪拌反應(yīng),提純、干燥即得改性納米二氧化硅;
步驟S2:將改性納米二氧化硅、聚醚F127、α-烯基磺酸鈉在無水乙醇中振蕩分散均勻,通氮除氧后密封攪拌反應(yīng),提純、干燥即得硅基納米原位乳化減阻劑。
配方比例:
納米二氧化硅的粒徑為20nm。
納米二氧化硅與硅烷偶聯(lián)劑的比例為1:0.5~6。
硅烷偶聯(lián)劑為γ-氨丙基三乙氧基硅烷。
納米二氧化硅與硅烷偶聯(lián)劑的反應(yīng)條件為,通氮除氧30min后,在100~120℃條件下密封攪拌反應(yīng)6~8h。
改性納米二氧化硅與聚醚F127的比例為1:2.5~7.5。
改性納米二氧化硅與α-烯基磺酸鈉的比例為1:1.25~5。
聚醚F127中聚環(huán)氧丙烷嵌段聚合度為n=30,聚環(huán)氧乙烷單嵌段聚合度為n=40,α-烯基磺酸鈉中碳鏈范圍為Cn=14~16。
改性納米二氧化硅、聚醚F127、α-烯基磺酸鈉的反應(yīng)條件為,通氮除氧30min后,在110~120℃條件下密封攪拌反應(yīng)3~5h。
硅基納米原位乳化減阻劑的界面張力降低性能測試
硅基納米原位乳化減阻劑的界面張力降低測試結(jié)果圖;
采用克呂士SDT旋轉(zhuǎn)滴界面張力儀分別測量原油(粘度723.7 mPa·s)滴入各實施例的地層水溶液后的界面張力(IFT),其中,各實施例在地層水中的質(zhì)量濃度為0.3%,并將原油滴入地層水中作為對照組進(jìn)行測量,測得對照組界面張力為21.6mN/m,其余各實施例測量結(jié)果如圖所示。可以看到,原油與三種實施例溶液混合后的體系的IFT可降低至1.25~1.46mN/m,證明了硅基納米原位乳化減阻劑具有良好的界面張力降低效果。
硅基納米原位乳化減阻劑的巖石濕潤性改善性能測試:
在75℃條件下,將親油巖片分別浸泡在實施例1、2、3中的硅基納米原位乳化減阻劑與地層水(礦化度6×104mg/L,Ca2+、Mg2+濃度分別為2×103mg/L)配制成的質(zhì)量濃度0.3%的溶液中24h,巖片表面-模擬水-原油初始接觸角為134°,通過測量親油巖片表面-模擬水-原油之間的接觸角來評價潤濕性的改善。其結(jié)果:浸泡24h后,親油巖片表面-模擬水-原油之間的接觸角從134°下降到43°~48°不等,說明硅基納米原位乳化減阻劑能夠?qū)r石的親油表面改善為親水表面,改善潤濕性效果明顯。