合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 烷基-β-D-吡喃木糖苷溶解性、表面張力、乳化性能等理化性質(zhì)研究(四)
> 基于深度神經(jīng)網(wǎng)絡(luò)模型分析明膠溶液荷電量與表面張力之間的關(guān)系(二)
> 超微量天平應(yīng)用于EPM2000玻璃纖維濾膜的快速消解
> 泡沫洗手液的泡沫是如何產(chǎn)生的?泡泡的產(chǎn)生離不開表面活性劑
> 硅基納米原位乳化減阻劑與原油的界面張力達(dá)到10-1mN/m數(shù)量級(jí),提高原油采收率
> 氨基改性硅油柔軟劑的表面張力、透水率、分層測試(一)
> 礦用塵克(C&C)系列除塵劑對(duì)大采高工作面截割煤塵的降塵效率影響(二)
> 二氧化鈦表面親疏水研究取得進(jìn)展
> 仲醇聚氧乙烯醚硫酸鹽平衡和動(dòng)態(tài)表面張力及應(yīng)用性能研究(一)
> 研究發(fā)現(xiàn):水解聚丙烯酰胺HPAM降低油水界面張力能力極其有限(一)
推薦新聞Info
-
> 低總濃度下實(shí)現(xiàn)"超低界面張力"與"高黏彈性乳狀液"的雙重突破
> 巖液作用后海陸過渡相頁巖表面張力變化研究
> 低表面張力解堵液體系適用于海上低壓氣井水侵傷害治理
> 不同比例墨水配制對(duì)量子點(diǎn)薄膜形貌的影響
> 含氟聚氨酯超疏水涂層表面性能、化學(xué)穩(wěn)定性、耐摩擦性能研究——結(jié)果與討論、結(jié)論
> 含氟聚氨酯超疏水涂層表面性能、化學(xué)穩(wěn)定性、耐摩擦性能研究——摘要、實(shí)驗(yàn)部分
> 不同表面張力和接觸角下膨脹土裂隙的發(fā)展演化過程(三)
> 不同表面張力和接觸角下膨脹土裂隙的發(fā)展演化過程(二)
> 不同表面張力和接觸角下膨脹土裂隙的發(fā)展演化過程(一)
> 基于表面張力測定探究油酸乙酯對(duì)油酸鈉浮選石英的促進(jìn)作用機(jī)理
雙內(nèi)凹結(jié)構(gòu)表面可實(shí)現(xiàn)對(duì)低表面張力液體的穩(wěn)固超排斥
來源:哈工大鄭州研究院 哈爾濱工業(yè)大學(xué) 瀏覽 914 次 發(fā)布時(shí)間:2024-02-28
由于較低的表面張力,油滴很容易在固體表面鋪展?jié)櫇?,從而降低整個(gè)體系的界面自由能,因此,實(shí)現(xiàn)低表面扎張力的超排斥相對(duì)來說比較困難。為了實(shí)現(xiàn)低表面張力油的超排斥,目前有相關(guān)研究人員提出了雙內(nèi)凹結(jié)構(gòu),通過雙內(nèi)凹結(jié)構(gòu)能夠有效鎖定固-液-氣三相接觸線,阻止液體沿著表面微結(jié)構(gòu)向下滑移,從而將液體支撐在微結(jié)構(gòu)空氣層上面而實(shí)現(xiàn)對(duì)不同液體的有效排斥。
但是,現(xiàn)有技術(shù)中制備得到的雙內(nèi)凹結(jié)構(gòu)尺寸均在幾十微米以上,雖然能夠?qū)崿F(xiàn)低表面張力液體的超排斥,但這種排斥性極不穩(wěn)定,如空氣流動(dòng)或者液滴自身運(yùn)動(dòng)都會(huì)導(dǎo)致液體塌陷并濕潤固體表面。
一種制備更小尺寸雙內(nèi)凹結(jié)構(gòu)的方法,提高對(duì)低表面張力液體的超排斥能力,提升穩(wěn)定性。
為解決上述問題,本發(fā)明提供一種微米雙內(nèi)凹結(jié)構(gòu)表面的制造方法,包括以下步驟:
步驟S1、在半導(dǎo)體材料的表面設(shè)置光刻膠層;其中,所述半導(dǎo)體材料包括上下設(shè)置的硅層和二氧化硅層,所述光刻膠層設(shè)置在所述二氧化硅層遠(yuǎn)離所述硅層一側(cè)的表面上;
步驟S2、對(duì)所述光刻膠層進(jìn)行第一刻蝕,使預(yù)設(shè)微圖案轉(zhuǎn)移至光刻膠層上,得到光刻膠掩模板;其中,所述預(yù)設(shè)微圖案為圓孔陣列結(jié)構(gòu),所述圓孔陣列結(jié)構(gòu)中相鄰圓孔的間距相同;
步驟S3、根據(jù)所述光刻膠掩模板,對(duì)所述二氧化硅層進(jìn)行第二刻蝕,在所述二氧化硅層上與所述預(yù)設(shè)微圖案對(duì)應(yīng)位置形成第一圓柱孔陣列,所述第一圓柱孔陣列中包括多個(gè)周期性陣列的第一圓柱孔,得到第一刻蝕半導(dǎo)體材料;
步驟S4、在所述二氧化硅層中所述預(yù)設(shè)微圖案的對(duì)應(yīng)區(qū)域,沿所述第一圓柱孔的軸向?qū)λ龉鑼舆M(jìn)行第三刻蝕,在所述硅層中形成與所述第一圓柱孔對(duì)應(yīng)的第二圓柱孔,然后去除所述光刻膠掩膜板,得到第二刻蝕半導(dǎo)體材料;
步驟S5、在所述第二刻蝕半導(dǎo)體材料中具有所述二氧化硅層的一側(cè)沉積二氧化硅,形成沉積二氧化硅層,然后通過刻蝕去除位于所述第二圓柱孔底部的所述沉積二氧化硅層,得到第三刻蝕半導(dǎo)體材料;
步驟S6、采用深反應(yīng)離子刻蝕機(jī)的Bosch工藝,對(duì)所述第二圓柱孔中的所述硅層進(jìn)行各向異性刻蝕,得到第四刻蝕半導(dǎo)體材料;
步驟S7、繼續(xù)對(duì)所述第二圓柱孔中所述硅層進(jìn)行各向同性刻蝕,在所述半導(dǎo)體材料上形成了微米雙內(nèi)凹結(jié)構(gòu)表面。
綜上所述,本發(fā)明實(shí)施例能夠在材料表面通過微加工的方式制備了特征尺寸在10微米以下的雙內(nèi)凹結(jié)構(gòu)表面,所制備表面具有較大的突破壓和界面穩(wěn)固因子,可實(shí)現(xiàn)對(duì)低表面張力液體的穩(wěn)固超排斥。