合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> LB膜的優(yōu)缺點(diǎn)和制備方法
> 表面張力儀的校準(zhǔn)方法
> 克服表面張力使液態(tài)金屬可拉伸電子器件化的研究進(jìn)展
> 植物油中N-?;被岜砻婊钚詣┑慕缑婊钚院途奂袨椤Y(jié)果和討論
> 洗發(fā)水中的表面活性劑
> 陽離子、陰離子的界面潤(rùn)濕行為——摘要、介紹
> 表面張力是啥意思?簡(jiǎn)單解釋下表面張力是什么現(xiàn)象
> N-月桂酰肌胺酸鈉水溶液在不同PH下的界面性質(zhì)及聚合性能的研究
> 表面張力儀的優(yōu)點(diǎn)與參數(shù)
> 從張力角度來解釋兩個(gè)小固體漂浮在液面上會(huì)靠近還是遠(yuǎn)離
推薦新聞Info
-
> 耐擦刮無膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(二)
> 耐擦刮無膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(一)
> 利用超微量天平制備微孔淀粉處理含Cu(II)離子染料廢水
> 不同類型的堿、pH值對(duì)孤東油田原油界面張力的影響(下)
> 不同類型的堿、pH值對(duì)孤東油田原油界面張力的影響(上)
> 不同結(jié)晶結(jié)構(gòu)的脂肪晶體顆粒界面自組裝行為、儲(chǔ)藏穩(wěn)定性研究
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測(cè)定及對(duì)泡沫壓縮性能的影響(三)
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測(cè)定及對(duì)泡沫壓縮性能的影響(二)
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測(cè)定及對(duì)泡沫壓縮性能的影響(一)
> 多功能膜材研發(fā):界面張力已成為整套工藝鏈協(xié)同下動(dòng)態(tài)演化的核心控制點(diǎn)
微尺度區(qū)域內(nèi)靜電相互作用力動(dòng)態(tài)調(diào)節(jié)和脂質(zhì)雙分子層的分布——結(jié)論、致謝!
來源:上海謂載 瀏覽 1615 次 發(fā)布時(shí)間:2021-10-28
四、總結(jié)與結(jié)論
在這項(xiàng)研究中,我們使用不同的中性和帶電方法測(cè)量了域間相互作用對(duì)微米級(jí)平面脂質(zhì)雙層特性的影響。 域。 一方面,我們確定了動(dòng)態(tài)參數(shù),例如域的擴(kuò)散和域的速率 合并。 第一個(gè)實(shí)驗(yàn)表明,當(dāng)該區(qū)域 液相有序相所占的比例高,域 由于域間排斥,運(yùn)動(dòng)被排除, 并且當(dāng)域被觀察到更顯著的效果 帶電。 關(guān)于域合并,我們已經(jīng)證明 對(duì)于中性膜,結(jié)構(gòu)域以緩慢的速度融合,當(dāng) 它們被充電,增強(qiáng)的相互作用阻止它們?cè)跍y(cè)量時(shí)間范圍內(nèi)合并。 在 另一方面,我們進(jìn)行了靜態(tài)測(cè)量,使我們能夠研究 雙層平面中域的結(jié)構(gòu),并估計(jì)它們之間的平均場(chǎng)相互作用常數(shù)。 我們發(fā)現(xiàn) 對(duì)于中性,域在 22%Lo 處形成有序晶格 薄膜和平均帶電薄膜的 18%Lo。 均值 場(chǎng)勢(shì),它考慮了之間的相互作用 域,與帶電域相比更強(qiáng) 中性的,它們隨著 %Lo 增加的趨勢(shì)與 域擴(kuò)散系數(shù)所遵循的行為。
在雙層中進(jìn)行的所有實(shí)驗(yàn)也在相同脂質(zhì)成分的單層中進(jìn)行,并使用 相同離子強(qiáng)度的溶液,結(jié)果發(fā)現(xiàn) 雙層結(jié)構(gòu)與單層結(jié)構(gòu)非常相似。 這是一個(gè)重要的結(jié)果,因?yàn)樵趩螌又校o電 已經(jīng)在很大程度上描述了排斥,它們的影響是 被科學(xué)界廣泛接受。14、26、28、29、53、55、61、62 因此,域行為的相似性 雙層表明不可忽略的靜電相互作用 微米范圍,因此不完全篩選 水環(huán)境。 此外,域間排斥 此處描述的存在用于耦合域,表明 我們系統(tǒng)中的偶極密度沒有被取消,而是 占上風(fēng),與建議在對(duì)稱中發(fā)生的相反 Travesset 等人報(bào)告的域 63 反過來,我們的結(jié)果指出 平面內(nèi)域間的重要貢獻(xiàn) 膜內(nèi)的排斥力。 域間排斥 也可能存在非靜電起源(即曲率或 高度不匹配)但預(yù)計(jì)它們之間是相似的 帶電系統(tǒng)和中性系統(tǒng)。 因此,差異 預(yù)計(jì)這些系統(tǒng)之間的發(fā)現(xiàn)主要是由于 靜電相互作用。
總之,遠(yuǎn)非可以忽略不計(jì),我們證明了 雙層中的域-域靜電排斥出現(xiàn) 不僅要在場(chǎng),還要在 擴(kuò)散運(yùn)動(dòng)、界面結(jié)構(gòu)和域的合并。 這些力,很可能發(fā)生在膜平面內(nèi), 在微米范圍的長(zhǎng)度尺度上似乎很重要,并且 在生理?xiàng)l件下。 因此,插入細(xì)胞膜的物種之間的靜電相互作用可能 考慮到一種調(diào)節(jié)膜特性的方式,和 用于膜內(nèi)分子的通訊。 在 除了生物膜,重要的是要注意的是 這些結(jié)果可能與其他類型的薄膜相關(guān) 偶極或帶電物質(zhì)的介觀結(jié)構(gòu)。
致謝
這項(xiàng)工作得到了 SECyT-UNC、CONICET 和 FONCYT(項(xiàng)目投標(biāo) 0770),阿根廷。 西北是職業(yè) 研究員和 AM 是 CONICET 的博士研究員。 作者 感謝 Bruno Maggio 博士的修訂和幫助 手稿和 Jose′ Ignacio Gallea 的討論 內(nèi)容圖稿設(shè)計(jì)表。
參考
1 P. Mueller, D. O. Rudin, H. T. Tien and W. C. Wescott, Circulation, 1962, 26, 1167–1171.
2 A. D. Bangham, B. A. Pethica and G. V. Seaman, Biochem. J., 1958, 69, 12–19.
3 Y.-H. M. Chan and S. G. Boxer, Curr. Opin. Chem. Biol., 2007, 11, 581–587.
4 D. Lingwood and K. Simons, Science, 2009, 327, 46–50.
5 I. Mellman and W. J. Nelson, Nat. Rev. Mol. Cell Biol., 2008, 9, 833–845.
6 M. Sto¨ckl, J. Nikolaus and A. Herrmann, in Liposomes: Methods and Protocols, Biological Membrane Models, ed. V. Weissig, Humana Press, Totowa, NJ, 2010, vol. 2, pp. 115–126.
7 M. F. Hanzal-Bayer and J. F. Hancock, FEBS Lett., 2007, 581, 2098–2104.
8 C. Dart, J. Physiol., 2010, 588, 3169–3178.
9 K. Simons and D. Toomre, Nat. Rev. Mol. Cell Biol., 2000, 1, 31–39.
10 A. F. G. Quest, J. L. Gutierrez-Pajares and V. A. Torres, J. Cell. Mol. Med., 2008, 12, 1130–1150.
11 H. M. McConnell, L. K. Tamm and R. M. Weis, Proc. Natl. Acad. Sci. U. S. A., 1984, 81, 3249–3253.
12 F. Vega Mercado, B. Maggio and N. Wilke, Chem. Phys. Lipids, 2012, 165, 232–237.
13 M. Karttunen, M. P. Haataja, M. Saily, I. Vattulainen and J. M. Holopainen, Langmuir, 2009, 25, 4595–4600.
14 S. Ha¨rtel, M. L. Fanani and B. Maggio, Biophys. J., 2005, 88, 287–304.
15 A. J. Garc?′a-Sa′ez, S. Chiantia and P. Schwille, J. Biol. Chem., 2007, 282, 33537–33544.
16 F. A. Heberle, R. S. Petruzielo, J. Pan, P. Drazba, N. Kucˇerka, R. F. Standaert, G. W. Feigenson and J. Katsaras, J. Am. Chem. Soc., 2013, 135, 6853–6859.
17 J. M. Holopainen, H. L. Brockman, R. E. Brown and P. K. Kinnunen, Biophys. J., 2001, 80, 765–775.
18 F. V. Mercado, B. Maggio and N. Wilke, Chem. Phys. Lipids, 2011, 164, 386–392.
19 A. Aroti, E. Leontidis, E. Maltseva and G. Brezesinski, J. Phys. Chem. B, 2004, 108, 15238–15245.
20 M. L. Longo and C. D. Blanchette, Biochim. Biophys. Acta, Biomembr., 2010, 1798, 1357–1367.
21 A. E. McKiernan, T. V Ratto and M. L. Longo, Biophys. J., 2000, 79, 2605–2615.
22 U. Bernchou, J. Brewer, H. S. Midtiby, J. H. Ipsen, L. A. Bagatolli and A. C. Simonsen, J. Am. Chem. Soc., 2009, 131, 14130–14131.
23 M. L. Fanani, L. De Tullio, S. Hartel, J. Jara and B. Maggio, Biophys. J., 2009, 96, 67–76.
24 A. A. Bischof, A. Mangiarotti and N. Wilke, Soft Matter, 2015, 2147–2156.
25 P. Kru¨ger and M. Lo¨sche, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, 62, 7031–7043.
26 H. McConnell, Annu. Rev. Phys. Chem., 1991, 42, 171–195.
27 T. M. Fischer and M. Losche, Lect. Notes Phys., 2004, 634, 383–394.
28 M. Seul and D. Andelman, Science, 1995, 267, 476–483.
29 D. Andelman, MRS Proc., 1989, 177, 337–344.
30 J. Liu, S. Qi, J. T. Groves and A. K. Chakraborty, J. Phys. Chem. B, 2005, 109, 19960–19969.
31 T. M. Konyakhina, S. L. Goh, J. Amazon, F. A. Heberle, J. Wu and G. W. Feigenson, Biophys. J., 2011, 101, L8–L10.
32 J. J. Amazon, S. L. Goh and G. W. Feigenson, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2013, 87, 1–10.
33 H. M. McConnell and A. Radhakrishnan, Biochim. Biophys. Acta, Biomembr., 2003, 1610, 159–173.
34 S. Rozovsky, Y. Kaizuka and J. T. Groves, J. Am. Chem. Soc., 2005, 127, 36–37.
35 J. T. Groves, Annu. Rev. Phys. Chem., 2007, 58, 697–717.
36 S. Semrau, T. Idema, T. Schmidt and C. Storm, Biophys. J., 2009, 96, 4906–4915.
37 T. S. Ursell, W. S. Klug and R. Phillips, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 13301–13306.
38 M. Montal and P. Mueller, Proc. Natl. Acad. Sci. U. S. A., 1972, 69, 3561–3566.
39 C. W. Harland, M. J. Bradley and R. Parthasarathy, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 19146–19150.
40 A. V. Samsonov, I. Mihalyov and F. S. Cohen, Biophys. J., 2001, 81, 1486–1500.
41 B. L. Stottrup, D. S. Stevens and S. L. Keller, Biophys. J., 2005, 88, 269–276.
42 S. L. Veatch and S. L. Keller, Phys. Rev. Lett., 2002, 89, 268101.
43 F. Tokumasu, A. J. Jin, G. W. Feigenson and J. a. Dvorak, Ultramicroscopy, 2003, 97, 217–227.
44 G. W. Feigenson, Biochim. Biophys. Acta, Biomembr., 2009, 1788, 47–52.
45 A. Mangiarotti, B. Caruso and N. Wilke, Biochim. Biophys. Acta, Biomembr., 2014, 1838, 1823–1831.
46 S. H. White, D. C. Petersen, S. Simon and M. Yafuso, Biophys. J., 1976, 16, 481–489.
47 A. Beerlink, S. Thutupalli, M. Mell, M. Bartels, P. Cloetens, S. Herminghaus and T. Salditt, Soft Matter, 2012, 8, 4595.
48 W. D. Niles, R. a Levis and F. S. Cohen, Biophys. J., 1988, 53, 327–335.
49 S. May, Soft Matter, 2009, 5, 3148.
50 N. Wilke and B. Maggio, J. Phys. Chem. B, 2009, 113, 12844–12851.
51 I. F. Sbalzarini and P. Koumoutsakos, J. Struct. Biol., 2005, 151, 182–195.
52 L. Belloni, J. Phys.: Condens. Matter, 2000, 12, R549–R587.
53 B. Caruso, M. Villarreal, L. Reinaudi and N. Wilke, J. Phys. Chem. B, 2014, 118, 519–529.
54 B. D. Hughes, B. A. Pailthorpe and L. R. White, J. Fluid Mech., 1981, 110, 349–372.
55 E. Rufeil-Fiori, N. Wilke and A. J. Banchio, Soft Matter, 2016, 12, 4769–4777.
56 N. Wilke, F. Vega Mercado and B. Maggio, Langmuir, 2010, 26, 11050–11059.
57 S. Ha¨rtel, M. L. Fanani and B. Maggio, Biophys. J., 2005, 88, 287–304.
58 V. A. J. Frolov, Y. A. Chizmadzhev, F. S. Cohen and J. Zimmerberg, Biophys. J., 2006, 91, 189–205.
59 P. I. Kuzmin, S. A. Akimov, Y. A. Chizmadzhev, J. Zimmerberg and F. S. Cohen, Biophys. J., 2005, 88, 1120–1133.
60 S. Keller and H. McConnell, Phys. Rev. Lett., 1999, 82, 1602–1605.
61 N. Wilke and B. Maggio, Biophys. Rev., 2011, 3, 185–192.
62 D. Andelman, F. Bro?hard and J. Joanny, J. Chem. Phys., 1987, 86, 3673–3681.
63 A. Travesset, J. Chem. Phys., 2006, 125, 0–12.
微尺度區(qū)域內(nèi)靜電相互作用力動(dòng)態(tài)調(diào)節(jié)和脂質(zhì)雙分子層的分布——摘要、簡(jiǎn)介
微尺度區(qū)域內(nèi)靜電相互作用力動(dòng)態(tài)調(diào)節(jié)和脂質(zhì)雙分子層的分布——實(shí)驗(yàn)材料和方法
微尺度區(qū)域內(nèi)靜電相互作用力動(dòng)態(tài)調(diào)節(jié)和脂質(zhì)雙分子層的分布——結(jié)果和討論
微尺度區(qū)域內(nèi)靜電相互作用力動(dòng)態(tài)調(diào)節(jié)和脂質(zhì)雙分子層的分布——結(jié)論、致謝!