合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 基于陰離子?非離子型表面活性劑復(fù)配最佳強化潤濕高效驅(qū)油體系——摘要
> 壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對CO2-正構(gòu)烷烴界面張力的影響——實驗部分
> 水面上單分子層膜通過磷脂光控開關(guān)實現(xiàn)可逆光學(xué)控制——實驗
> 石莼、菠菜類囊體膜LB膜的制備及在納米ZnO上的組裝和光電性質(zhì)
> pH對馬來松香MPA與納米Al2O3顆粒形成的Pickering乳液類型、表/界面張力影響(四)
> uv油墨消泡劑還你一個多彩的世界!
> 基于深度神經(jīng)網(wǎng)絡(luò)模型分析明膠溶液荷電量與表面張力之間的關(guān)系(二)
> 高沸點表面活性劑對納米LiBr溶液表面張力沸騰溫度的影響(下)
> 全自動表面張力儀問題解決
> 表面張力為25%乙醇溶液作為球磨溶劑,制備MG超細粉替代天然橡膠補強劑
推薦新聞Info
-
> 不同表面張力和接觸角下膨脹土裂隙的發(fā)展演化過程(三)
> 不同表面張力和接觸角下膨脹土裂隙的發(fā)展演化過程(二)
> 不同表面張力和接觸角下膨脹土裂隙的發(fā)展演化過程(一)
> 基于表面張力測定探究油酸乙酯對油酸鈉浮選石英的促進作用機理
> 不同酸值、分子結(jié)構(gòu)對烷基苯磺酸鹽界面活性的影響(二)
> 不同酸值、分子結(jié)構(gòu)對烷基苯磺酸鹽界面活性的影響(一)
> 七葉皂素分子在氣-液、液-液(油-水)、固-液界面上的界面行為研究(三)
> 七葉皂素分子在氣-液、液-液(油-水)、固-液界面上的界面行為研究(二)
> 七葉皂素分子在氣-液、液-液(油-水)、固-液界面上的界面行為研究(一)
> 泡沫發(fā)生以及破裂機理|發(fā)泡劑在泡沫染整中的主要作用及類型
溫度對水—十二烷基硫酸鈉體系與純水體系界面張力、厚度的影響——模擬方法
來源:河南化工 瀏覽 209 次 發(fā)布時間:2025-04-14
摘要:采用分子動力學(xué)模擬技術(shù),對水及其表面活性劑體系的汽—液界面行為進行了研究。模擬結(jié)果表明,隨著溫度的升高,純水體系液相主體密度降低,氣—液界面厚度增大,界面張力逐漸減?。凰榛蛩徕c體系與純水體系相比,汽—液界面厚度明顯增大,汽—液界面張力明顯減小,其隨溫度的變化規(guī)律和純水體系一致。
眾所周知,表面活性劑具有降低水的表面張力能力,其在氣—液界面上的吸附行為是發(fā)揮效用的關(guān)鍵。氣—液界面熱力學(xué)行為一直是相變傳熱傳質(zhì)研究的重點。由于氣—液界面厚度非常薄,這就使得其理論分析和實驗研究變得十分困難。近些年來,隨著計算機技術(shù)的迅猛發(fā)展,越來越多的學(xué)者采用分子動力學(xué)(MD)模擬方法,來研究氣—液相變界面特性。Kuhn等采用分子動力學(xué)方法,考查了氣—液界面上的脂肪醇聚氧乙烯醚非離子表面活性劑(C12E5)單分子層的結(jié)構(gòu)參數(shù)以及分子的動態(tài)行為。Wu等采用分子動力學(xué)模擬技術(shù),分析了不同種類的胺基Gemini型表面活性劑在正庚烷—水體系的界面張力、密度分布,以及分子的微觀結(jié)構(gòu),其模擬結(jié)果與實驗吻合良好。苑世領(lǐng)等用分子動力學(xué)模擬的方法,研究了陰離子表面活性劑十二烷基硫酸鈉(SDS)在汽—液界面上的結(jié)構(gòu)和動力學(xué)性質(zhì)。肖紅艷等研究了不同油相和鹽度條件下表面活性劑—烷烴—水體系的界面結(jié)構(gòu),給出了徑向分布函數(shù)、二面角幾率變化等動力學(xué)結(jié)構(gòu)信息。本文擬采用分子動力學(xué)模擬方法,利用LAMMPS軟件模擬水及其表面活性劑體系的氣—液界面行為。
1模擬方法
1.1模擬體系
采用直角坐標(biāo)系,水體系的模擬盒子(初始狀態(tài))如圖1所示,其大小為Lx×Ly×Lz=12 nm×4 nm×4 nm。液體水分子以面心立方(FCC)晶格方式排列于模擬盒子的中央,汽相分別處于液相的左右兩側(cè),整個模擬體系中有兩個氣—液界面。
圖1水體系的模擬盒子(初始狀態(tài))
采用直角坐標(biāo)系,水—十二烷基硫酸鈉表面活性劑體系的模擬盒子(初始狀態(tài))如圖2所示,其大小為Lx×Ly×Lz=12 nm×4 nm×4 nm。液體水分子以隨機分布的方式位于模擬盒子的中央,兩側(cè)各有一相對的表面活性劑單分子層,汽相分別處于液相的左右兩側(cè),整個模擬體系中有兩個氣—液界面。
圖2水—十二烷基硫酸鈉體系的模擬盒子(初始狀態(tài))
1.2勢能模型
水分子模型很多,如SPC、SPCE、TPI3P和TPI4P等,其結(jié)構(gòu)示意圖和模型參數(shù)分別見圖3和表1。水分子的勢能函數(shù)如式(1)所示。
圖3不同水分子模型的結(jié)構(gòu)示意圖
圖3a中為SPC、SPCE和TIP3P模型,b為TIP4P模型(L:負電荷作用點;H:正電荷作用點)
表1水分子模型參數(shù)
表中:q,電量,C;σ,尺度參數(shù),nm;ε,能量參數(shù),J;kB,玻爾茲曼常數(shù),J/K;r,分子間距,nm;θ鍵角,(°)。
在水—表面活性劑體系的MD模擬中,十二烷基硫酸鈉采用全原子模型,力場參數(shù)基于AMBER力場,其函數(shù)形式如方程(2)所示。
式中:kr、kθ、Vn分別為鍵力常數(shù)、彎曲力常數(shù)、二面角扭曲常數(shù);l0、θ0分別為標(biāo)準(zhǔn)鍵長和標(biāo)準(zhǔn)鍵角;n為整數(shù)(繞鍵旋轉(zhuǎn)360°時出現(xiàn)的能量最小值的數(shù)目);φ為二面角;rij為原子i和j之間的距離;靜電相互作用項中的q表示原子上的電荷數(shù),e。不同原子間的范德華相互作用項中的εij和σij,采用Lorentz-Berthelot混合規(guī)則。
1.3模擬細節(jié)
水體系模擬在x、y、z方向均采用周期性邊界條件,原子間力的截斷半徑為12 nm,模擬時間步長為1 fs,總模擬時間為0.6 ns,前0.4 ns使得系統(tǒng)達到平衡,后0.2 ns統(tǒng)計計算并輸出系統(tǒng)的密度分布、界面張力以及界面厚度。采取正則系綜(NVT),并采用Woodcock控溫法維持體系溫度衡定;依照設(shè)定的溫度,隨機分布分子的初始平動速度;為了保證水分子不偏離盒子中心,每隔1 000步矯正體系的質(zhì)心,使之在x、y、z方向始終處于盒子的中心處;水—十二烷基硫酸鈉體系模擬原子間力的截斷半徑為10 nm,庫倫力的截斷半徑為12 nm;模擬時間步長為1 fs,總模擬時間為1.4 ns,前1.0 ns使得系統(tǒng)達到平衡,后0.4 ns統(tǒng)計計算并輸出數(shù)據(jù),其他的模擬設(shè)置同水體系一樣。本文模擬數(shù)據(jù)均采用LAMMPS(Large-scale Atomic/Molecular Massively Parallel Simulator)軟件計算得到。